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Abstract 

This project developed and demonstrated technology to measure and map whole vineyard microclimate at 

a sub-metre scale in 3D using atmospheric acoustic tomography (AAT) coupled with long wave infrared 

thermography.  The AAT system was based on a commercially available unmanned aerial vehicle (UAV) fitted 

with sensors that measure the sound of the UAV as it flies autonomously over the vineyard. A two-

dimensional array of microphones deployed throughout the vineyard also measure the sound generated by 

the UAV as it flies. Accurate, 3D, concurrent, continuous observation and visualisation of air, vine and ground 

temperatures, and wind speeds across vineyard blocks of around 10Ha is now possible. High-resolution 

plant and heat stress factors and thermal maps of frost patterns can thus be derived as a function of 

geographic and temporal variation across a vineyard. 
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Executive Summary 

This report represents the final submission to Wine Australia for the project entitled, “Use of Unmanned Air 

Vehicles for Early Detection of Extreme Weather Events in Vineyards”. The project was co-funded by Wine 

Australia and the Australian Government Department of Agriculture, Water and Environment as part of its 

Rural R&D for Profit program. 

The project, which had a strong technology focus, has resulted in the developed of a transportable, 

unmanned aerial vehicle (UAV)-based meteorological monitoring capability for observing frost and heat- 

prone vineyards with high accuracy and at unprecedented levels of resolution. The technology is designed to 

measure microclimates across a vineyard block over a growing season, or even multiple seasons, which would 

assist vineyard management decisions for protecting against crop damage resulting from weather- related 

stress. 

The research allows users to accurately estimate and visualise microclimates across vineyard blocks in 3D, 

permitting computation of plant stress factors like evapotranspiration (ET) and crop water stress index 

(CWSI). Using such parameters, users can now assess differences in microclimatic conditions within a region 

or vineyard and optimise irrigation, which is normally applied uniformly across a block. This would deliver 

water and energy savings. 

Similarly, during frost events the technology can provide high resolution thermal maps of the surface and air 

temperatures surrounding the vineyards as a function of geographic and temporal variation. This permits 

evaluation of the effectiveness and/or need for different frost mitigation strategies, such as frost fans or 

sprinklers. As the technology is still in its infancy, the full value of the microclimatic information it offers is 

still being assessed. However, initial conclusions suggest frost mitigation strategies based on air temperature 

measurements alone may be sub-optimal. 

In addition to the design and development of the technology and lessons learnt therein, several heat and 

frost stress events were observed and continue to be examined. Feedback from these analyses informed 

the technology’s potential application space and commercialisation considerations. However, the project 

would benefit from more analysis of the data sets acquired: this will be an ongoing task 

The technology is based on a commercially available Matrice 600 unmanned aerial vehicle (UAV) that was 

fitted with acoustic sensors that measured the pressure field (noise) generated by the UAV as it flew 

autonomously. Micro-sensors capable of synchronously recording meteorological variables such as wind 

velocity, temperature, pressure, and relative humidity were also fitted to this UAV. Two-dimensional arrays 

of microphones were deployed across two 10Ha vineyards: one at Wynn’s, Coonawarra, the other at Jacob’s 

Creek in the Barossa Valley. Each ground sensor also synchronously measured the pressure field generated 

by the UAV and matched them to those measured onboard the aircraft. From the correspondence 

relationships variations in sound speed for the signals propagating between the UAV and the ground sensors 

were computed as the aircraft overflew the vineyards. Using a technique commonly used in medicine, 

archaeology, and remote sensing known as tomography—which determines the inner properties of the 

observed medium—temperature and wind velocity profiles above and surrounding the vineyards were then 

computed in 3D. 

In conjunction with this UAV, a second Matrice 600, equipped with a camera capable of high spatial and 

temporal resolution thermal imagery, was also flown over the vineyards, and the temperatures of the 

ground and vines calculated from the long wave infrared (LWIR) measurements. A technique known as 

structure from motion (SfM) was applied to the LWIR images to create 3D thermal point clouds of the 

vineyard. Finally, the 3D thermographic measurements were fused with the 3D tomographic information 

and the micro-climates around the vineyard visualised at unprecedented levels of accuracy and resolution. 

Several severe frost and heat events were observed. 
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Furthermore, using the thermographic and tomographic data, together with estimates of solar irradiance 

and object emissivity (obtained during the LWIR sensing operations), evapotranspiration levels and crop 

water stress indices were computed as a spatial function of vineyard geography over a day. The technology 

also enabled visualisation of the impact of devices such as frost fans and irrigation strategies. Ultimately 

automatic dissemination of information gathered using this technology in near real time would enable 

growers to respond more quickly, cost-effectively, and precisely to severe weather events, which will 

become increasingly common through climate change. 

In addition to the above, a technique for identifying and classifying vine properties such as row width, height, 

cover-fraction, and missing segments was developed. The genesis of this algorithm was as a bi- product of 

the need for the tomographic-thermographic data fusion routines to uniquely identify the thermographic 

(LWIR radiation) properties of the vineyard, i.e. the need to automatically separate vines from inter-row 

material as they have different emissivity. The algorithm offers users the ability to rapidly, efficiently and 

non-destructively visualise plant vigour as a spatial function of vineyard geography: the information may be 

integrated into decision support tools to improve management practices. 

The algorithm uses a sequence of overlapping aerial images obtained from visible and long wave infrared 

cameras carried by the UAV and SfM to extract the underlying topography of the surface terrain. The 3D 

point clouds were then classified in terms of their hue, saturation, surface temperature and height relative to 

this surface topography, and the vine and inter-vine material discriminated from one another. The accuracy 

of the algorithm in terms of its ability to identify vine properties was evaluated using field measurements 

and was shown to be very effective. 
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Structure of this report 
Section 1 of the report provides the project objectives and Section 2 the basic technology concepts, together 

with the hardware and software builds. Section 3 outlines the campaign of field deployments and some 

preliminary conclusions drawn from these observations. Section 4 describes the algorithm for identifying 

and classifying vine properties such as row width, height, cover-fraction, and missing segments. The report 

concludes with a summary of the project and a description of future potential research. 

 

Participants 
The project assembled an experienced, multi-disciplinary team from the wine industry, academia, UAV 

specialists, and meteorologists, including Dr Michael McCarthy (South Australian Research and 

Development Institute), Dr Catherine Kidman (Wynn’s Coonawarra Estate), Tim McCarthy (Treasury Wine 

Estates), Pernod Ricard Winemakers, Dr Greg Holland (US National Center for Atmospheric Research), Peter 

Smith (Barton Vale Technologies), and Professor Anthony Finn (University of South Australia). 

 

1 Project rationale and objectives 

Many factors affect grapevine productivity: climate, weather, soil properties, topography, grape variety, 

management practices, and pests and diseases, with spatial variations of such factors within and between 

vineyards impacting both grape quality and yield. Optimal management practices are highly desirable, with 

decisions depending upon precise situational awareness of crop state ideally based on information gathered 

safely, efficiently, and non-destructively. Such tools allow the Australian wine and grape industry to face its 

fierce global competition in the marketplace and allow the sector to improve competitiveness through 

technology developments that deliver productivity gains. 

In this context, remote sensing offers considerable opportunities, with visible (VIS), long wave infrared 

(LWIR) and near infrared (NIR) hyperspectral sensors all providing windows into the complex surface 

chemistry present in vineyards. Although potentially promising, satellite-based observations are not 

routinely exploited: imagery from several satellite systems is commercially available, but the spatial 

resolution of their VIS and LWIR sensors (5 – 30m) is generally inadequate for mapping small vineyards [1]. 

Moreover, the superposition of signal returns from vines and inter-row material within a single pixel makes 

extraction of desired signatures difficult. Row structure and topography of underlying terrain must also be 

accounted for to avoid introduction of effects that depend upon the directionality of observations or signal 

reflectance [2-6]. Higher spatial resolution sensors (5 – 20cm) are therefore essential if the properties of 

inter-row returns are not to contaminate vine signatures, which are of prime importance to any decision 

support tool. Furthermore, satellite orbital characteristics, together with sensor pose, drive temporal 

availability of such data sets, as does the prevalence of cloud cover. 

Alternative, more operationally flexible remote sensing options, such as aircraft and Unmanned Aerial 

Vehicles (UAVs), are also available; and—relative to their satellite counterparts—the proximity of such 

platforms to vines intrinsically improves the ground resolution of the sensors carried. Although operation of 

such platforms is generally weather-dependent, planning flights close to particular stages of plant 

development is straightforward and several authors have examined mapping crop vigour using such 

techniques [7-10]. In the past few years increased availability of UAVs has also added new opportunities to 

acquisition of high spatial resolution imagery. As a result, there have been many studies into the acquisition 

and exploitation of multi- or hyperspectral data sets to assess vine vigour [11-14], grape species [15, 16], 

and water and nitrogen stress [12, 17] against vegetation indices, such as the normalised difference 

vegetation index [18]. 

The technology developed under this program offers growers knowledge of vineyard microclimates at the 
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micro-scale. The impact of extreme weather on vines and fruit is well-known. Variability in vineyard micro- 

climate produces variability in grape quality and production, which influences economic risk for several wine 

growing regions. There is a particularly strong relationship between grapevine yield, wine quality and 

extreme weather, the effects of which are well-known. The synoptic conditions that lead up to such events 

are also easily recognised: forecasters are seldom surprised. However, the duration of such weather events, 

exactly where frost events occur, precisely how hot it is within individual vineyards and under canopies and 

what the impact is on individual plants within a vineyard are all much harder to predict and monitor. 

Moreover, in the longer term, climate change will lead to growth in extreme weather events. 

Several protection methods are available to wine growers for combating extreme weather conditions, 

including private forecasting services at the micro-scale. However, such empirical forecasts typically rely 

upon a few  point source measurements and projections  updated  from synoptic  and mesoscale models 

that themselves rely upon data taken tens of kilometres from wine growing regions (and which are several 

hours old). There is a need for growers to know vine and fruit temperatures at the micro-scale with great 

precision and in near real time. 

The approach described here delivers a combination of vine, foliage, ground, and air temperatures and wind 

speed observations at the micro-scale (sub-metre). These are estimated to be accurate to within 0.2°C and 

0.3m/s, respectively. The technology is based on small, man-portable unmanned aerial vehicles (UAVs) that 

undertake autonomous flights vineyards. 
 

2 Technology concepts and components 

2.1 Acoustic Atmospheric Tomography 

Details of the technique are available in [19-26] and summarised below. A 2D array of microphones is 

deployed across a 10Ha vineyard and the sound fields at each sensor measured synchronously (≤ 100μs) with 

that generated by a UAV as it overflies the perimeter of the sensor array/vineyard. Careful correspondence of 

these two sets of observations allows sound speeds for signals propagating between the UAV and 

microphones to be calculated. As the location of the UAV and ground microphones are known accurately (≤ 

0.05m), ray path geometry may be computed, and a technique known as tomography applied. 

Tomography—which is used extensively in medicine, archaeology, and remote sensing—uses the geometry 

of emitters (UAV locations over time) and receivers (microphones) to determine the properties of the 

observed medium from the intersection of measurements taken passing through it. A depiction of the 

concept in 2D is shown in Figure 1. The relationship between sound speed, air temperature, and wind 

velocity, then allows profiles of the atmosphere to be computed and visualised for the vineyard 

environment. For a one-dimensional array of microphones, a 2D atmospheric profile is obtained; and for a 

2D array of microphones a 3D profile is obtained. 
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Figure 1: Graphical depiction of acoustic atmospheric tomography. As the UAV overflies an array microphones on the ground, the 
propagation delay, Δti, for the ith ray (of length ri) may be computed from the correspondence of the sound fields measured 
synchronously by them and a microphone onboard the UAV. The intersection of the rays allows ‘elements’ of the atmosphere to 
have their temperature (T) and wind velocities (V) computed. In fact, the differences in temperature and wind (ΔT and ΔV, 
respectively) relative to a nominal value are computed. 

 

2.2 LWIR Thermography 

A second UAV, equipped with a camera capable of high-resolution thermal imagery, is also flown over the 

vineyards to obtain ground and vine temperatures based on the long wave infrared (LWIR) irradiance 

measurements. Unfortunately, as not all the radiation received by the LWIR camera derives from the target 

object, to measure vine temperature accurately radiation from surrounding objects must be accounted for 

in the temperature calculations. The total radiation, 𝐼𝑡𝑜𝑡, received by the LWIR camera derives from several 

sources (Figure 2): radiation from the object of interest (e.g. vines), plus radiation from the surroundings 

(e.g. the ground) reflected onto the object’s surface, less the attenuation suffered by both components as 

they pass through the atmosphere, plus radiation received directly from the atmosphere. 

Knowledge of an object’s emissivity, 𝜀𝑜𝑏𝑗, (and hence reflectivity = 1 – emissivity), temperature of the 

atmosphere, 𝑇𝑎𝑡𝑚, and environment, 𝑇𝑟𝑒𝑓𝑙, and atmospheric transmittance, 𝜏𝑎𝑡𝑚, allows these factors to be 

accounted for and the temperature of the object, 𝑇𝑜𝑏𝑗, to be computed. Mathematical details of precisely 

how this is achieved are available in [27], but essentially the temperature of an object may be computed 

using 

 
 

 

Where 𝜎 ≈ 5.67 × 10−8Wm-2K-4 is the Stefan-Boltzmann constant and all temperatures are in Kelvin. 

The most important calibration parameter for field temperature measurement using thermography is 

emissivity as this indicates how much radiation is emitted from the target object when compared to that 

from a black body of the same temperature. In objects with high emissivity, such as plants, slight variations in 

the computed emissivity value cause only minor changes in the resulting surface temperatures. However, 

for lower emissivity objects such as reflective surfaces, small errors in emissivity measurement can cause 

significant variation in derived temperature estimates. 
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   Figure 2: Radiation components observed by long wave infrared camera 

 

As a result, during the UAV flights temperature monitoring devices were placed around the vineyard under (to 

protect them from the radiative effects of the sun) boards of known emissivity. One board had an emissivity 

of 0.95, the other 0.03 (images of these boards are shown in Figure 3). Based on the known temperature of 

the high emissivity boards, any discrepancy in temperature observed thermographically may be adjusted so 

that more accurate real temperatures of the objects in the environment can then be calculated. 

Although not as important in frost conditions (because vineyards predominantly comprise high emissivity 

plant material), measurement of reflected temperature is also important, especially when reflectivity of an 

object is high, e.g. when there is dry soil uncovered by plant material (as per heat stress conditions). In this 

project reflector boards covered with crumpled pieces of aluminium foil were placed next to the high 

emissivity boards and the temperature of the reflector measured thermographically. The temperature of 

this board was then computed (using Equation (1)) assuming an emissivity of one and no atmospheric loss; 

and the computation is then repeated—again using Equation (1)—using the previously computed 

temperature of the reflector board as the reflected temperature. The resulting temperature is the final 

reflected temperature, 𝑇𝑟𝑒𝑓𝑙. 
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Figure 3: Ground station setup in vineyard, showing microphones (50m apart), and thermographic calibration boards 

 

The thermographic and tomographic data are then fused with other meteorological and solar load data so 

that micro-climates around and within the vineyard can be obtained at sub-metre levels of accuracy and 

resolution. Both frost and heat events have been successfully observed during this project. 

 

2.3 Structure from motion 

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2D 

images. It is used in many applications, such as robot navigation, autonomous driving, and augmented 

reality. SfM has been extensively described in the literature [28-30]1. The process consists of two main 

components: camera motion estimation and DPC reconstruction. Initially, a sparse set of points are matched 

across the image stack to find correspondences. Such features are typically extracted using algorithms like 

SIFT (scale invariant feature transformation) [31] and SURF (speeded up robust features) [32]. The sequence 

of views is then iteratively processed to track a denser set of points across the views so that the pose of the 

camera can be established for each image set and—after the relevant coordinate transforms have been 

accommodated—a dense 3D reconstruction of the scene made. The process of estimating camera motion 

(and hence DPC) is generally improved if camera pose is recorded during image capture and applied during 

SfM computations, which in our case it was not. If a suitable selection of ground control points (GCP) are 

applied to the resulting DPC, absolute scale and orientation may also be determined. This was achieved 

through matching the reconstructed DPC to a Google Earth view of the same area. 

 

  

 
1 In order to carry out the SfM computations we have used proprietary software (written by UniSA in MATLAB), as well 
as MetaShape (previously known as Agisoft Photoscan) and Reality Capture. 
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2.4 Multi-UAV Acoustic Tomography2 

Despite its unprecedented capacity to observe vineyard microclimates, ground-based UAV AAT has some 

disadvantages. For example, as it compares the acoustic signature observed onboard the UAV with the 

Doppler-shifted sequence received by an array of ground- based microphones the technique loses accuracy 

at greater altitudes. The ground placement of microphones also imposes geometric restrictions on the 

tomography that reduces the achievable level of accuracy; and field deployments are very time-consuming. 

Small UAV’s also have top speeds of around 20m/s, so the atmosphere changes during the observation 

period and the resulting inversion therefore represents only a time-averaged sample of the atmosphere, 

not a crisp snapshot. 

We therefore examined the feasibility of an AAT technique that uses two or more UAVs. The technique 

permits faster observations, and hence less time-averaging of the atmosphere. It also offers even higher 

levels of user-control and mobility than the ground-based AAT. Most importantly, the technique allows 

simultaneous reciprocal time delay measurements to be observed along near-identical ray paths. As this is 

analogous to a sonic anemometer the influence of wind on the sound speed can be eliminated, enhancing 

the accuracy of the inversion. 

Furthermore, despite the low viscosity of air and rapid changes over small distances and time scales, the 

possibility of identifying energy harvesting opportunities for fixed wing UAV flight exists. To date this has 

only been possible based only on onboard sensors that rely upon the direct effects of the motion of the air 

on the UAV, i.e. using parameters such airspeed, altitude and throttle settings. In other words, the 

distribution and motion of atmospheric gradients inferred or learnt from multi-UAV AAT can be exploited by 

allowing the UAVs to perform static or dynamic soaring manoeuvres [33, 34]. The mathematical details of 

multi-UAV AAT are more complex that single-UAV AAT and are contained in [22]. 

 

  
 

Figure 4: Ray paths vs. angle for: (left) UAVs flying similar velocities and ‘chasing each other’s tail, and (right) UAV1and UAV2 
flying velocities in opposite directions that vary sinusoidally. 

  

 
2 The multi-UAV technology is not as robust or mature as the single-UAV approach, but it is more readily deployed. 
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Essentially, multi-UAV AAT works in the same way as a giant (multi-UAV based) sonic anemometer. Signals 

are emitted and received by the UAVs and signal processing techniques applied to obtain the propagation 

delays at sub-millisecond levels of accuracy. Knowing the locations of the UAVs at every epoch to within 

±0.03m the time delays may be corresponded to geometry, sound speed, and hence temperature and wind 

velocity. As velocity field errors tend to grow in the direction perpendicular to individual rays, however, the 

relative flight paths of each UAV are important. 

For example, if both UAVs fly clockwise circular paths with the same velocity, starting 180° out of phase, the 

ray paths—which propagate in both directions—will intersect like ‘spokes in a wheel’ (Figure 4, left). 

Moreover, the rays will not pass through the centre of the circle, as the receiving UAV moves during signal 

propagation; and they will only intersect at shallow angles at the outer elements of the circle. Whilst this 

makes the bi-directional resolution of the wind vector component simpler, it also makes the inversion 

problem sparse and ill-posed; and effectively precludes decoupling the combined effects of temperature 

and wind on sound speed. 
 

2.5 Equipment Details 
The various hardware builds required for this project are described in this section. 

Thermographic Payload: This comprises a gimbal-mounted ICI 8640P long wave infrared (LWIR) thermal 

imaging camera, which has a 640 x 480 14-bit Vanadium Oxide radiometric imager. This sensor has an 

update rate of 10fps and accuracy of 1°C. This payload also carries an Odroid digital camera with a 35mm 

lens. Both sensors had roughly 60° fields of view, providing a ground resolution of approximately 10cm or 

better. At the 10m/s forward velocity and 120m altitude typically used during trials, this provides about 85% 

and 50% overlap between images in the along- and across-track directions, respectively. This is allowed 

efficient coverage of a roughly 10Ha vineyard in about 3-5 minutes, depending upon prevailing weather 

conditions. The results are shown in Figure 5 and Figure 6. 

The UAV/payload was flown over the vineyards in a sequence of opposing parallel lines, oriented along vine 

row direction, at constant forward horizontal velocity and altitude. This pattern, colloquially known as a 

‘lawn mower’, is shown in Figure 7 as set of continuous white lines. The image shows the orthomosaic 

projection of the visible images obtained from the Odroid camera superimposed onto a Google Earth 

rendition of trial site at Jacobs Creek, Barossa Valley. 

Initially, a bespoke 1.4kg UAV was built to carry the payload. When the payload was used in conjunction 

with this UAV, the platform position was determined using standard positioning service GPS (horizontal 

accuracy 3-5m), with altitude maintained using barometric pressure. Separation between each parallel path 

was about 70m. During the life of the project, however, a second Matrice 600 was procured by UniSA under 

another project and the payload carried by this UAV as more accurate GPS positioning is available to the 

larger UAV. 

Several UAV-SfM integrated/automated flight path planners exist for managing the payload’s image 

acquisition strategies. However, because the image sequences of vineyards are highly repetitive and the 

lighting conditions can vary between image sets, images were collected at a rate of 10Hz. This provided the 

optimal trade-off between rapid/efficient coverage of the vineyard and recreation of 3D structure from 

motion from the constrained geometry. The overarching goal for the flight path strategy was to avoid the need 

for potential users to become expert in the design of UAV flight paths and SfM operations. Thus, the trials 

also demonstrated the algorithm’s robustness against imperfectly acquired real world data sets, and its 

insensitivity to noisy, imperfect and uneven performance of SfM. 
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Figure 5: Orthomosaic view of the dense point cloud generated from LWIR thermal imaging camera superimposed onto a  
Google Earth extract of the Jacobs Creek site. The DPC is colour-coded according to the temperature scale on the right 

 

 
 

Figure 6: Close up 3D temperature map of vines taken in Spring using the UAV-borne thermal imaging sensor 
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Figure 7: Orthomosaic view of the VIS dense point cloud superimposed onto a Google Earth extract of the Jacobs Creek site at 34° 
34’ 04’’ South, 138° 56’ 00’’ East. The white lines depict the approximate ‘lawn mower’ flight. 

 

 
Figure 8: Acoustic payload for UAV (one of two) 

 

AAT Drone & Payloads: A Matrice 600 UAV was modified to carry a payload designed and built under the 

project. The payload can simultaneously sample an ECM800 10mV/Pa condenser microphone at 44.1kHz 

and an accurate timing signal generated by the one pulse per second (1PPS) of a global positioning system 
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(GPS) receiver. The payload can also generate an acoustic signal (any pulsed or continuous spectral 

configuration), which can be detected at ranges in excess of 2km. Similarly, the payload continuously 

monitors UAV location and orientation (at a rate of 50Hz) and wind velocity measured onboard the UAV 

during motion (at a rate of 1Hz). The payload can operate under severe weather conditions (-5°C – 50°C). 

Ground Stations: 7 ground stations (Figure 9) were designed and built. Each unit comprises an 8-channel, 24-

bit Data Acquisition (DAQ) recorder with 107dB spurious free dynamic range capable of simultaneously 

sampling 7 ECM800 10mV/Pa condenser microphones at 44.1kHz. Accurate time stamping of the data is 

obtained by the first channel of the DAQ also sampling a GPS-derived 1PPS edge. Each ground station is 

contained within a weatherproof box and can operate under unattended in extreme weather conditions (-

5°C – 50°C), is battery/solar powered (and thus deployable for extended periods). The full set of seven 

ground stations can be operated remotely from a single computer in the field or over the internet. 

Meteorological micro-drone: Micro meteorological sensors were integrated onto a Phantom IV UAV (Figure 

10) to measure pressure, temperature, relative humidity, and location at a rate of 1Hz. Barometric pressure 

was used (in conjunction with a third, ground-based iMet-XQ sensor) to accurately determine sensor 

altitude to within ±0.5m as the vertical component of SPS GPS is generally accurate only to about 

±20m. Thermodynamic temperature was converted to virtual temperature based on measurements taken 

onboard the UAV. Based on laboratory tests, the temperature sensor is accurate to within ±0.3°C. 
 

 

Figure 9: Ground station (one of seven), comprising a laptop that manages and records data from an 8-channel, 24-bit DAQ with 
107dB spurious free dynamic range. 7 channels sample ECM800 10mV/Pa condenser microphones at 44.1kHz. Accurate time 
timing is maintained by sampling the GPS-derived 1PPS edge on the 8th channel. 
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Figure 10: Meteorological sensors mounted above and below a Phantom IV UAV. They are placed above and within the 
airstream generated by the UAV’s propellers to capture meteorological measurements. The meteorological sensors can measure 
pressure (±1.5hPa), temperature (±0.3°C), relative humidity (±5%), and location (±5m) simultaneously at a rate of 1Hz (note: the 
UAV’s propeller blades are removed as a safety precaution while it is in the laboratory). 

 

3 Field deployments and assessment 
The reporting on the campaign of field deployments is split into three sub-sections: accuracy assessment, 

followed by observation of heat stress and frost events. 
 

3.1 Performance assessment: simulation 
Single UAV-Based AAT: During the equipment construction phase of the project (year one), the focus the 

anticipated performance of UAV-based AAT was examined using synthetic 2D atmospheres based on Large 

Eddy Simulation (LES). Sullivan and Patton [35] generated a suite of atmospheric simulations for a canonical 

daytime convective planetary boundary layer (PBL) using large eddy simulation (LES). The volume of 

atmosphere represented in their simulations comprises a uniform grid mesh of 1,0243 points in a 5,120m x 

5,120m (horizontal) x 2,048m (vertical) volume. The simulations are carried forward in time for about 38 

minutes, so the data set provides temperature and wind velocity at each point in the 3D space-time lattice. 

The parameters used to simulate this weakly sheared daytime convective PBL are contained in Sullivan and 

Patton [35]. 

Figure 11 (upper left) shows a vertical cross-section of temperature through the LES data set typical of that 

used in the analysis. Figure 11 (upper right) shows an expanded section of the image on the left. The lower 

figure shows a similar image (also expanded from that shown upper left) with wind velocity overlayed. 

Arrows point in the direction of the wind with lengths scaled according to speed (the largest represents the 

maximum wind speed, 2.8 m/s). 

The AAT scenarios used a simulated linear array of microphones located over baselines ranging from 100m to 

3,000m, with a range of sensor separations were use. At least 10 ground sensors covered any baseline. 

Although LES allows simulation of time-varying atmospheres, wind and temperature profiles were assumed 

to be frozen over the observation period. The 100 m x 100 m simulations were used to examine the extent 
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to which scale sizes at the resolution of the LES data set (2-5m) could be faithfully reproduced. Larger 

simulations (1,000 m and 3,000 m baselines by 1,000 m altitude) were used to examine the extent to which 

this fine-grain information could be extracted from larger scenarios more in keeping with the target 

application. 

Rays were propagated through the known vertical profile of wind and the propagation delays determined by 

numerically integrating along the straight-line path between the start and end of each ray. The integration 

steps were aligned with the cell size of the LES data. The RBF were located within a uniform 100 m x 100 m 

grid. Representative propagation errors were superimposed onto the ‘true’ time delay value for each ray 

generated for the aircraft-ground sensor array geometries. The errors were applied as a bias (calculated as 

a percentage of propagation delay), a random component (represented by additive Gaussian white noise 

and applied around the bias) applied to each time delay, and a random component (represented by additive 

Gaussian white noise) applied to all locations. These errors represent propagation errors, signal processing 

errors, and position-location (GPS) errors, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Cross-sections of atmospheric profiles generated by Sullivan and Patton [35]. The upper right figure is an expanded 
section of that shown in the upper left. The lower figure shows temperature (colour coded as per the colour bar on the right 
hand side) and wind velocity (shown as arrows). 
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Figure 12: Target temperature and wind profiles (left) and those estimated using tomography (right). Errors due to signal processing and ray 
path propagation are 0.1ms and 0.01%, respectively. 

 

 

 
 

Figure 13: Target temperature and wind profiles (left) and those estimated using tomography (right). Errors due to signal processing and 

ray path propagation are 1ms and 0.1%, respectively. 
 

Figure 12 shows comparisons between target and tomographic estimates of temperature and wind profiles 

derived using the error regimes of 0.1ms for signal processing, 0.1% ray path length, and 0.1m for GPS. Ground 

sensors were spaced at 10m intervals. Simulations for the target atmosphere (left) and reconstructions based 

on signal processing and ray path errors of 1ms and 0.5% (right) are shown in Figure 

13. The higher errors produce significantly poorer estimates of the temperature and wind profiles and indicate 

the upper limit for tolerable observation noise for the technique. 

The error plots for both Figure 12 and Figure 13 are shown in Figure 14. There are two components of error: 

direct and indirect. The direct error is the degree of mismatch between the target LES profiles and their 

replication using RBFs: the more RBFs used, the more faithfully the target data are replicated, and the lower the 

direct error. Ideally, massively dense RBF sets are used. However, the ill-posed and sparse nature of the inverse 

problem causes numerical instability in the matrix inversions. This forces a reduction in the number of RBF 

involved in the inversion, and hence its resolution. 
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Figure 14: Direct and indirect error plots for temperature and wind speed as a function of height. The figure on the left shows the error 
plots for measurement errors of 0.1ms and 0.1% path length, whereas the figure on the right shows temperature and wind speed 
errors for measurement errors of 1ms and 0.5% path length: red asterisks represent ‘indirect’ errors (estimates obtained from the 
tomographic inversion) and green triangles the results of directly fitting the same RBF lattice as used by the tomographic inversion 
directly to the LES data. 

 

The indirect error is the accuracy with which the inversion can faithfully represent the ‘best’ RBF fit to the target 

data. In other words, it is possible to have substantial direct error but negligible indirect error if the original LES 

profiles are heavily spatially averaged through use of a small number of RBF. Thus, a key measure of success for 

the overall technique is given by comparison of the direct (red asterisks) and indirect errors (green triangles) as 

the link shows correspondence between the tomographic inversion and LES data at the same atmospheric scale 

size and RBF resolution (Figure 9). 

To a first order the indirect error is governed by the number of RBFs (and hence separation distance between 

them)3 While the Eikonal assumptions for propagation through such a medium would be questionable, for RBF 

separation distances < 1m temperature differences between the estimated and target atmospheres are 

negligible (< 0.01°C). If the RBF separation distance is increased to 10m (as per Figure 7) correspondence falls to 

about 0.2°C (1σ). Pressure to increase separation distance between RBF (and hence reduce resolution and 

accuracy of the solution) is predominantly driven by the need to manage the number of degrees of freedom (DOF) 

in the inversion. Too many DOFs lead to numerical instabilities as errors in one (poorly observed) RBF coefficient 

typically propagate to others. This is because the inter- cellular relationship between coefficients is (at present) 

unconstrained. 

Multi-UAV Based AAT: Two UAVs were ‘flown’ through the Sullivan and Patton LES data. The aircraft flew in 

opposite directions to one another at slightly different altitudes (to avoid collision). Their ray path intersection 

map is shown in the righthand image of Figure 4. The aircraft flight dynamics were not considered to be 

influenced by wind vectors or temperature variations and the structure of the atmosphere was assumed to be 

‘frozen’ over the duration of the simulation. 

The signal processing regime represented was based on that used during field trials reported elsewhere [36]: a 

102 dB dynamic range, 44.1 kHz ADC on both UAVs, combined with a 216 point Fast Fourier Transform (FFT) with 

Welch averaging comprising four-times over-sampling and 50% overlap between 

sample blocks. This represents ray paths to/from each UAV at 2 Hz and SNR commensurate with the 

experimental data reported in Rogers & Finn [36]. 

 
3 The memory of the computer used to perform the inversion (an Intel® Core i7-5600U CPU@2.6GHz with 16 GB RAM) is 
also a factor as a more powerful machine would provide the capacity to process a denser ray set. 

mailto:CPU@2.6GHz
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The UAV position and signal process errors were once again modelled by superimposing additive Gaussian white 

noise (AGWN) onto the locations of the aircraft and true propagation delays for each epoch. For position errors 

this was at levels commensurate with real time kinematic carrier phase Differential GPS, 

i.e. 0.05 m. For the errors due to front end signal processing, the reduction in SNR due to wind noise and mutual 

interference from the UAV engine and ADC sampling rate jitter are modelled in accordance with levels derived 

in [21, 22], i.e. 0-10ms. Variations in the refractive index along the ray path were modelled by adding a 

percentage of the true delay in accordance with the benchmark regimes of an unstable atmospheric boundary 

layer suggested by Ostashev et al [37], i.e. 0.06%, 0.14%, and 0.67% for low, moderate and strong wind regimes, 

respectively [20]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 15: Cross-sections of a horizontal LES atmospheric profile at 100 m. Temperature is colour coded according to the scale on the 
righthand side. Wind speed is shown as arrows with magnitude proportional to speed (maximum, 4.0 m/s). 

 

Figure 15a (top) shows a horizontal cross-section of temperature through the LES data set typical of that used 

in the analysis. Figure 15b-d (images, second top to bottom) show a representation of this data using RBF 

separated by 25m, 50m and 100m, respectively. The temperature is colour coded according to the bars on the 

righthand side of each figure, which show deviation from the average background temperature. Wind speed is 

shown as arrows with magnitude proportional to speed (maximum wind speed is 4.0 m/s). In other words, 

Figure 15b-d show spatially averaged LES data at varying degrees of resolution. The mismatch between these 

images and Figure 15a represents the direct error, i.e. an indication of the degree to which the target data can 

be accurately replicated using RBF. 
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To a first order the direct error is driven by the density of RBF. Although geometric acoustic assumptions for 

propagation through such a medium would be questionable, for RBF separated by 2m differences between 

estimated and target atmospheres are < 0.01°C and < 0.01 m/s rms. Lowering the resolution to 50 m increases 

errors to about 0.2°C and 0.1 m/s. 

A requirement to reduce the spatial resolution of the estimate of the atmosphere is governed by the need to 

reduce the number of degrees of freedom (DOF) in the tomographic inversion: many DOF results in numerical 

instabilities. That is, the ill-conditioned nature of the inverse problem means that errors in poorly estimated 

coefficients propagate to others as the coefficient relationship is unconstrained (say, by a correlation distance 

[38]) except on flight path of the UAV. 
 

      
 

Figure 16: Estimated temperature and wind profiles based on (left) no time delay, path length, and GPS errors and (right) 10ms signal 
processing, 0.1% path length and 0.1 m GPS errors. Separation between RBF for the left-hand image is 75m and 150m for the right-
hand one. The white asterisks represent the circular orbits flown by the UAVs. 

 

3.2 Performance assessment: field comparisons 
To assess the accuracy of the AAT, the results obtained through tomographic inversion were compared to a 

ZephIR LIDAR. LIDAR operates using similar principles to radar: near infrared light energy is emitted by the lidar 

and particulate matter carried by the atmosphere scatters the light, such that the wind velocity and height 

information may be obtained as a function of height from the Doppler shift and time delay information 

measured in the returned signal. To achieve this, assumptions are made regarding homogeneity of scatterers 

and the way they are carried by the wind. For a more complete understanding of the operating principles of 

these instruments the reader is referred to (Hall Jr et al., 1984, Hooper and Eloranta, 1986, Singal, 1997, 

Antoniou et al., 2003, May et al., 1989, May et al., 1988, May et al., 1990, Strauch et al., 1984). 

Over a period of 5 days, field trials were conducted near Rowland Flat in South Australia. The days were hot 

(max > 40°C) with moderate winds (5 – 10m/s). The UAV was repeatedly flown at an altitude of up to 120m 

above a 300m x 300m array of 49 microphones. The inter-sensor separation distances for the microphones was 

approximately 50m. All were positioned approximately 1.5m above ground level. The ground was flat with 

variation in elevation of about 12m. The vegetation was vines in full leaf (close to harvest). 
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The location of each microphone was determined using Real Time Kinematic Carrier Phase Differential Global 

Positioning System, which has an accuracy of ±0.03m. The UAV was also fitted with RTK CP DGPS, enabling 

position recording at 5Hz with similar accuracy. Horizontal wind velocity, air temperature, barometric pressure 

and relative humidity were also recorded onboard the UAV at 1Hz. 

For practical reasons, the LIDAR was located just outside the microphone array, approximately 50m northwest 

of the sensor coinciding with the origin of the coordinate system. 3D wind velocities were observed at 10m 

intervals between altitudes of 30m and 110m every 15sec. The (1σ) nominal uncertainty for measurement error 

reported by the manufacturer is 0.3m/s for each axis, but this figure is generally dependent upon the prevailing 

conditions and particulate matter contained by the atmosphere. A more detailed assessment was not made. 

A DJI Phantom IV UAV carrying two iMet-XQ sensors was also repeatedly flown around the perimeter of the 

microphone array between an altitude of 20m and 120m. Two sensors were used as there is typically up to 0.5°C 

variation between the two sensors, depending upon their placement on the UAV (Jacob et al., 2018). Position 

(based on SPS GPS), thermodynamic temperature, pressure, and relative humidity were recorded at 1Hz. 

Pressure was used (in conjunction with a third, ground-based iMet-XQ sensor) to accurately determine sensor 

altitude to within ±0.5m as the vertical component of SPS GPS is generally accurate only to about 

±20m. Thermodynamic temperature was converted to virtual temperature based on measurements taken 

onboard the UAV. Based on laboratory tests, the temperature sensor is known to be accurate to ±0.3°C. 
 

Figure 17: Comparison between horizontal wind speed components observed by LIDAR (red) and UAV-based AAT (green) 
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Figure 18: Comparison between vertical wind speed components observed by LIDAR (cyan) and UAV-based AAT (green) 
 

Figure 19: Comparison between temperature measurements directly observed (from a UAV) and AAT-derived 
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3D temporally averaged volumetric atmospheric profiles for wind velocity and temperature were then obtained 

using UAV-based AAT. These were compared to the independent measurements taken by the LIDAR and sensors 

onboard the Phantom UAV (Figure 1, Figure 2, and Figure 3). 

In Figure 17 and Figure 18 the vertical red line represents the temporal average of the LIDAR data over the 

duration of the entire AAT observation set, whereas the green dots represent the AAT estimates at each 10m 

increment for the location closest to the LIDAR. The (red) error bars associated with the LIDAR data represent 

min/max variation of the LIDAR measurements over the observation period of the AAT, whereas the blue bars 

represent the min/max variation of the AAT estimates over the area of the array at each 10m interval. 

In Figure 19 typical differences between the mean of the virtual temperatures observed by the two iMet sensors 

onboard the Phantom UAV and the AAT estimates are displayed. They are colour-coded in accordance with the 

scale on the right of each image. The coordinate system is such that the origin coincides with the leftmost 

microphone of the array. The positive y-axis points forward through the left- most line of microphones, the z-

axis is vertical and the x-axis orthogonal to these two axes, roughly coinciding with the first microphone in each 

row. 

The AAT and UAV/LIDAR measurements show correspondence accuracies of around 0.5°C for temperature and 

0.3m/s for each component of wind velocity, respectively. This compares very favourably to other inter-

instrument atmospheric comparisons, such as LIDAR vs. SODAR and is within the measurement errors of the 

system. The correspondence also accords with the performance envelope determined using the LES data set. 

Optimisation of the procedures used in the AAT and a more detailed analysis of this data continues. 
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4 Field measurements 

4.1 Heat stress easurements 
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Figure 20: Thermal maps of the Jacob’s Creek vineyard superimposed onto a Google Earth image 
 

Heat stress measurements were conducted on days for which maximum air temperatures exceeded 40°C. Trials 

were conducted at a Shriaz vineyard at Jacob’s Creek, Rowland Flat. The results below, which show orthographic 

projections of thermal maps of surface temperature obtained using the LWIR payload and 3D temperature and 

wind velocity profiles, are for a day with maximum temperature 42°C. 
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Figure 21:Three-dimensional temperature profiles above the vineyard. Each image shows the 3D temperature profile at a different time 
of day, colour-coded in accordance with the bar on the right of each image. The arrows indicate the wind direction in each slice/plane of 
the atmosphere. 
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Figure 22: Three-dimensional wind speed profiles. Each image shows the 3D wind speed profile at a different time of day, colour-coded in 
accordance with the bar on the right of each image. Arrows indicate wind direction in each slice/plane 
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The spatial resolution of the thermal camera provided a ground sampling distance of about 10cm. The vine 

canopies were approximately 1.5m high. They are not pruned, and terrain undulates slightly over the roughly 

10Ha area of the test site, varying by around 12m from lowest to highest points. The surface temperatures of 

the (non-plant) material in the vineyard routinely exceed 60°C; and there is considerable variation across the 

vineyard. Irrigation ruptures and poorer performing vines are readily visible. At the hottest part of the day vine 

temperatures reach 40°C. 

Under these harsh conditions, irrigators have traditionally relied on local or regional weather stations to 

estimate crop evapotranspiration (ET), the volume of water lost from a vineyard that needs to be replaced via 

irrigation. However, the detailed spatial and temporal knowledge of micrometeorological information now 

available as a result of this project enables us to compute theoretical grapevine water status and thus 

(potentially) optimise water application requirements.4 

In order to compute these parameters, the temperature balance between the vines (leaves) and the 

atmosphere must be determined. This balance is largely regulated by the transpiration rate and hence stomatal 

conductance. Leaves interact with their environment through energy exchange processes. This allows vines to 

optimise their metabolic functions, and when there is an imbalance leaf temperature changes until a new 

equilibrium is achieved. 

Leaf temperature is thus a function of the interaction of several factors/processes: air temperature, 

absorbed/re-emitted solar radiation,, and the processes of convection and transpiration [39, 40]. The basic 

components of the plant energy balance can therefore be divided into: absorption of shortwave solar radiation 

by leaf tissues; net absorption and emission of long wave radiation from the sky and terrestrial infrared 

radiation); heat exchange via convection and conduction between the (physical contact of) leaf surfaces and 

the surrounding air; and evaporative cooling due to leaf transpiration, i.e. through the movement of water by 

diffusion from the inner leaf surfaces, through the stomatal pores, to the atmosphere (the phase transition from 

liquid to gaseous water causes cooling). 

Some results for the Jacob’s Creek trial are shown below. These estimates of ET are achieved through 

computation of net solar load, vapour pressure, and sensible and latent heat flux using the well-known Penman-

Monteith Equation [41, 42]. One of the key benefits of the technique developed under this project is that wind 

profiles need not be estimated from point measurements 2m above the ground and surface temperatures are 

measured directly. 

It is noteworthy that—as the energy exchange due to transpiration is influenced by stomatal conductance, the 

difference in water vapour pressure between the leaf and air, and the boundary layer conductance— it is 

possible to compute stomatal conductance as a function of vineyard geography using the technology developed 

under this project.5 This becomes possible because we are able to observe or estimate so many of the factors that 

impact stomatal conductance, e.g. related transpiration rates, as well as environmental factors such as air 

temperature, solar radiation, and wind speed. We are also able to compute indices such as the Crop Water Stress 

Index (CWSI) to provide an indication of relative stomatal conductance. 

Some results for a heat stress trial conducted at Jacob’s Creek, Rowland Flat are shown below. 
  

 
4 Noting that capitalising on the microclimatic information now available would require a sophisticated irrigation system 
capable of supplying water differentially across the vineyard. 
5 A data set was obtained under a collaboration with Adelaide University, but this is still to be fully analysed. 
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Figure 25: Evapotranspiration rates and crop water stress index 
 

 

Another advantage of the UAV-based thermography is that—as abiotic and biotic stresses typically result in a 

decrease in photosynthesis and transpiration—it can be used to detect changes in the physiological status of 

the plants, thereby revealing spatial heterogeneity that can occur at the individual leaf level [43]. This would 

allow for rapid measurement of relative temperatures of the canopy and could augment the techniques 

developed for determining plant vigour (see Section 4). 
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4.2 Frost event measurements 
There are two types of frost event: advection frost and radiation frost. Advection frost events are very rare in 

wine-growing regions of Australia and occur when cold air moves into a region and replaces the warmer air 

present prior to the change in weather. Such events are associated with moderate to strong winds, no 

temperature inversion,6 and low humidity. During these events temperatures often fall below 0°C and remain 

there for prolonged periods. 

Radiation frosts are much more common occurrences, particularly nocturnal ones. Characterised by clear skies, 

low wind speeds, and temperature inversions, radiation frosts occur because heat is lost in the form of radiant 

energy, i.e. more heat is radiated away from a vineyard than is received by it, so the temperature drops. Air 

temperature cools faster near the radiating surfaces (the ground and vines), causing a temperature inversion to 

occur, i.e. temperature increases with height above ground. 

Energy is gained by downward radiation from the sky, by conduction of heat upward through the soil, and by 

convection of warmer air to colder plants. Wind is a factor because it increases the amount of energy transferred 

from the air to the vines; and a wind of about 2m/s produces enough convective heat transfer to balance the 

heat losses. This is the goal behind frost fan protection. Latent heat is only a factor when water is present, so it 

is generally ignored except when irrigation techniques are used for frost protection. 

Two frost events were observed in at Wynn’s, Coonawarra. During the first event air temperatures fell to around 

0°C but frost did not form on the ground or on the vines. During the second event, air temperatures fell to about 

the same level, but frost did form on the ground. As the vines were close to bud burst during the second event, 

however, the vineyard managers operated the frost fans to protect the plants from damage. The data for the 

second event is shown here in three sequences of images (Figure 26, Figure 27, and Figure 28). By way of contrast, 

the atmospheric data from the first event, which shows a stronger inversion forming, is shown in Figure 29 and 

Figure 30. It is also notable that, although the data set is smaller, stronger wind conditions around 100m are 

prevalent, which may well have prevented the formation of frost crystals on the ground surfaces, i.e. the 

elevated winds provided protection by increasing the downward sensible heat flux density. In other words, they 

mixed warmer air from higher in the atmosphere with colder air closer to the ground. Examination of such events 

would not be possible without the technology developed under the program or the establishment and 

maintenance of masts, which are both very costly and would interfere with meteorological conditions. 

The frost fans observed in this imagery are two-blade fans. Their location can be seen in each image as a group 

of three slightly lighter (hotter) pixels in the centre of the vineyard. They are particularly prominent in images 

three and four in the sequence, which were taken while the diesel generators driving them were operating. It is 

apparent, particularly from images three and four, that the fans have provided beneficial impact to the surface 

temperatures of the vineyard, but that their effectiveness in this regard varies as a function of distance from 

the fan. 
 
  

 
6 A temperature inversion is a reversal of the normal behaviour of temperature in the atmosphere near the Earth’s surface: 
a layer of cool air at the surface is overlain by a layer of warmer air. Under ‘normal’ conditions air temperature usually 
decreases with height, whereas with an inversion (until the inversion layer is reached) temperature increases. 
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Figure 26:Surface temperatures measured during a Frost event at Wynn’s Coonawarra. The local time at which the flights took place 
are shown on each image and the temperatures are colour-coded in accordance with the bar in the right. 
 
 

It is noteworthy that a slight elevation in surface temperature persists even post-dawn (image five in the 

sequence). However, it is not known what the impact of such an effect might be on plant development at this 

stage of its growth, if anything. 

The effectiveness of irrigation frost protection techniques, which were also activated, can also be seen in image 

sequences three and four. These are the regular patterns of lighter (warmer) temperatures in the lower and 

upper left of these two images. 
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Figure 27: 3D temperature profiles measured during a frost event in Coonawarra. Each image shows temperature for a different time of day, 
colour-coded in accordance with the bar on the right. Arrows indicate wind direction 
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Figure 28: 3D wind speed profiles measured during a frost event in Coonawarra. Each image shows wind speed for a different time of 
day, colour-coded in accordance with the bar on the right. Arrows indicate wind direction. 
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Figure 29: 3D temperature profiles measured during a frost event in Coonawarra. Each image shows temperature for a different time of 
day, colour-coded in accordance with the bar on the right. Arrows indicate wind direction. 
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Figure 30: 3D wind speed profiles measured during a frost event in Coonawarra. Each image shows wind speed for a different time of day, 
colour-coded in accordance with the bar on the right. Arrows indicate wind direction. 
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5 Determination of vineyard properties 
This component of the technology development was not covered within the milestone schedule is reported due 

to its potential utility to users. It was developed as a result of the need to determine the differing irradiance 

properties of the vineyard material. It offers an algorithm that can be used for estimating the structural 

characteristics of vineyards from remotely sensed dense point clouds (DPC). It requires input of only a single 

parameter, readily determined by an untrained operator. The algorithm does not require training on specific 

data sets and is insensitive to complex colour, contrast and lighting variations typically found in the real world. 

It also copes with noisy and imperfect point clouds generated by sub-optimal UAV flight and camera 

configurations, as well as the uneven spatial performance of SfM algorithms. It was evaluated under 

intentionally complex and sub-optimal conditions over a vineyard where green grass is sometimes present 

between the vines. Its performance strongly suggests it is suitable for application in vineyard decision support 

tools. 

Introduction: A key issue in characterisations of vineyard properties is isolation of pixels belonging to the vine 

rows from those belonging to the spaces in between and elsewhere. Difference in spectral properties between 

these domains were first attempted by applying a threshold to vegetation indices computed from multi-sensor 

images [14, 44]. Other researchers have applied Fourier transforms to the red band of the red-green-blue (RGB) 

classification of images [45-47]. Unfortunately, complex lighting conditions, such as poor contrast, shadow, and 

glare—as well as the need for spectral contrast between the green of vine rows and the presence of grass 

between rows—has limited the performance of such methods. 

To overcome such shortfalls, a photogrammetric technique known as Structure from Motion (SfM) [28- 30] is 

often used to obtain DPC from the overlapping nature of multiple VIS/RGB images obtained by a UAV. This has 

been applied to vineyards [48] and other crops [49] to obtain 3D models of terrain and extract fractions of 

vegetation cover; and to estimate vineyard structure [1]. Unfortunately, while these approaches can 

discriminate between vines and grass between rows, existing algorithms are sensitive to even slight illumination 

variations common in real world settings. Additionally, in order to obtain good performance, current techniques 

need flight configurations and camera settings that are optimised [1]. 

Methodology: Simple UAV flight paths were executed with aerial observations of the test site made in both the 

RGB and LWIR components of the electromagnetic spectrum. 3D DPC were generated using SfM and the 

underlying topography of the surface terrain identified and excised. To enhance computational speed, a Kd-tree 

[50] partitioned the DPC by recursively splitting it into binary clusters. This allowed a nearest neighbour search 

to be quickly executed using a bounded data query [51], from which the surface topography was statistically 

determined. This topographic model was then used to normalise the DPC to a reference surface, whereupon 

Lloyd’s classification algorithm [52] was applied to a combination of height, hue, saturation and irradiance (the 

latter measured by the LWIR sensor). The clusters were associated using Gaussian probability density functions 

(PDFs). Finally, the macro-structure and spatial properties of the vineyard (vine vs. inter-row, row height, width, 

cover fraction and missing row segments) were mapped as spatial functions of vineyard geography. 

An overview of the algorithm that computes vine structure is shown in Figure 31. As all mathematical techniques 

involved are well understood, wherever possible, only verbal descriptions of their function and references to 

source material is provided in this paper. This is simply to ensure concise narrative. 



Use of Unmanned Air Vehicles for Early Detection of Extreme Weather Events in Vineyards 

 

60 

 
 

Figure 31: Algorithmic overview of vine macrostructure characterisation algorithm. Red (dotted) and green (dashed) lines indicate 
processes executed sequentially on both VIS and LWIR imagery. The black (continuous) line indicates processes executed on the 
joint imagery 

 

Image acquisition: Field experiments took place at the Jacob’s Creek vineyards in the Barossa Valley, South 

Australia. Visibility was clear, the sky cloudless and air temperatures ranged from temperate (25°C) at about 

9.00am to very hot (43°C) at around 3pm local time. These conditions provide regions of dark shadowing, as 

well as zones of high irradiance and directionally dependent illumination and reflectance: a combination of 

circumstances that challenge many image processing techniques. Moreover, by judicious selection of observation 

sets, the thermal conditions were able to offer both a challenging test set for the LWIR data and sound ground 

truth. 

The UAV with the thermographic payload overflew the vineyard at a constant forward horizontal velocity of 

10m/s and altitude of 120m in a sequence of opposing parallel lines, oriented along vine row direction (roughly 

SE-NW). UAV position was determined using standard positioning service GPS (accuracy 3-5m), with altitude 

obtained using barometric pressure. Separation between each parallel path was about 70m. Images were 

collected at a rate of 10Hz, but only one in ten images was used, i.e. an effective update rate of 1Hz. SfM flight 

paths and camera settings were not optimised because, while several automated flight path planners exist for 

UAVs/SfM, they typically require specialised user knowledge, i.e. skill sets outside those of a vineyard manager. 

Their use would thus require time-consuming setup and post-processing; and the overarching aim was to avoid 

the need for users to become expert in the design of UAV flight paths and SfM optimisation; and the goal was 

to develop an algorithm that was robustness to imperfectly acquired real world data sets, and insensitive to 

noisy, imperfect, and uneven performance of SfM. 

The UAV carried the gimbal-mounted thermographic payload described earlier in this document, so it had a 

roughly 60° field of view, and about 85% and 50% overlap between images in the along- and across- track 

directions, respectively. This allows coverage of a 10Ha vineyard in about 3 minutes with a ground sampling 

distance of about 10cm. The vine canopies were approximately 1.5m high. They are not pruned, and terrain 

undulates slightly over the roughly 10Ha area of the test site, varying by around 12m from 
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lowest to highest points. Every tenth LWIR image was used to generate a DPC. Moreover, observations were 

taken at about 10.00am, providing only modest contrast between leaf and ground irradiances; and, as the sun 

has not yet reached its zenith, the vines create significant shadowing (cooler regions). Both circumstances were 

designed to challenge the vine segmentation algorithm. 
 

Figure 32: Variation of height for Jacob’s Creek test site (left) prior to removal of surface topography and (right) afterwards (note 
change of scale between images) 

 

The VIS DPC of the vineyard generated by SfM in this way contains around 35 x 109 points, which are randomly, 

but approximately homogenously, arranged throughout the 10Ha vineyard [Note: computation may be 

significantly enhanced, without great loss of accuracy, if the DPC is downsampled using interpolation based on 

grid averaging]. The LWIR DPC was also generated using SfM, with the image stack colour-coded according to 

temperature. The lower resolution of the LWIR imager results in a noisier and more distorted DPC as—in 

addition to generating camera location and orientation—the SfM process also estimates distortion created by 

the camera lens, which is more difficult for an LWIR sensor [53]. 

Compute model of surface terrain (nearest neighbour network using Kd-tree): As the underlying topography 

of the terrain varies in altitude by approximately 12m over the vineyard, in order to use height as a discriminator 

for vine vs. inter-row material (both of which can be similar in colour), the surface topography must first be 

identified and vine height computed relative to this. Furthermore, as SfM can be an imperfect, noisy technique, 

vineyards with more subtle topographic variations generally represent greater challenges for height 

identification algorithms. This is because noise or inaccuracies in the DPC represent larger errors in relative 

terms, presenting greater challenges for clustering and association algorithms later in the processing chain. 

To ensure computational tractability, data is down-sampled by a factor of 100 and a Kd-tree [54] used to 

partition the DPC by recursively splitting it into clusters. This allows a k-nearest neighbour (k-NN) search to be 

quickly evaluated on sub-blocks of the data using a query bounded by a circle of radius 5m. This in turn enables 

the approximate surface topography to be determined by finding the local minimum for each point queried in the 

k-NN search. The influence of outliers is minimised using a technique devised by [55]. 

After resampling back to original ground resolution using 2D spline interpolation, with Golay filtering [56] applied 

to reduce noise, the complex 3D reference ground plane is subtracted from the original DPC height data to 

normalise (‘flatten’) the point cloud (Figure 4 right). Points lower than 0m are set to this value. It 



Use of Unmanned Air Vehicles for Early Detection of Extreme Weather Events in Vineyards 

 

62 

is recognised that grass growing between the rows may result in an elevated reference plane, and thus lower 

estimates of vine heights in some regions of the vineyard. 

Cluster vineyard properties using Lloyd’s algorithm: In addition to normalising vineyard height, prior to 

clustering the colour properties of the VIS DPC are transformed from RGB to hue-saturation-value (HSV). The 

2D circular scale of hue and saturation better enables colour properties to be associated than the linear RGB 

representation. The value component of the HSV scale is ignored as the degree of illumination can vary 

dramatically across a strongly sunlit vineyard. In the case of the LWIR sensor data, surface temperature is colour 

coded from minimum to maximum and thus clustered in terms of its HSV representation (with its value 

component again ignored). 

Lloyd’s algorithm, also known as k-means clustering, is then applied separately to the normalised height, 

irradiance and HS values of the two DPCs. Lloyd’s algorithm is an iterative, data-partitioning (sometimes also  

referred  to   as  unsupervised  machine   learning)  technique  that  assigns observations  to  one   of k clusters 

defined by centroids, where k is chosen before the algorithm starts. We typically used k = 7 for each category, 

finding results to be largely insensitive to values higher than this. 

Lloyd’s algorithm operates as follows: (i) point-to-cluster-centroid distances for all observations to each centroid 

are computed; (ii) each observation is associated to the cluster with the closest centroid [note: observations 

can be individually assigned to a different centroids if the reassignment decreases the sum of the within-cluster, 

sum-of-squares point-to-cluster-centroid distances]; (iii) the mean of the observations in each cluster is 

computed to obtain k new centroid locations; (iv) steps (i) through (iii) are repeated until cluster assignments do 

not change, or the maximum number of iterations is reached. Figure 5 shows the outcome of the algorithm, 

colour-coded by cluster. 
 
 

 
Figure 33: Outcome of Lloyd's classification, colour-coded (left) by HSV and (right) height. Colour represents elements of the DPC 

identified with each cluster. 
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Figure 34: Result of vine identification algorithm using VIS data alone (left) and (right) close-up of Region 1. 

 

 
Figure 35: Expanded view of the raw imagery (left) and DPC (right) of Region 2 (Figure 6) 

 
 
 
 

 

Figure 36: Vine identification based on LWIR data alone for the entire vineyard (left) and an expanded area (right) 

 

 

 

 

Region 1 
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Associate clusters using Gaussian PDFs: It is clear from the above images that, on its own, k-means clustering 

does not successfully identify vineyard properties in terms of either height or colour. We thus apply a priori 

knowledge to the height data, assuming that vines are less than 2m tall. The results of the height clustering are 

therefore ordered from smallest to tallest and the most significant cluster with a Lloyd’s centroid less than 2m 

assumed to be that most likely to contain the bulk of the points containing vine foliage. Based on Bayesian 

association, the colour (irradiance) cluster most associated with this height cluster is then declared the most likely 

vine colour (irradiance). 

A series of Gaussian PDFs are then established such that                                                    where                is the 
probability that any given VIS point is a vine, α and β are the point-to-centroid distances in the height and 
colour clusters, and μH and μC are the mean point-to-centroid distances obtained for the height and colour 
clusters declared in the previous paragraph.  The process is then repeated for the LWIR DPC and   
computed.                         

The VIS and LWIR clusters, which are co-registered to the same coordinate system, are fused using a joint 

PDF, 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡 ) = 𝑝(𝑣𝑉𝐼𝑆 ) + 𝑝(𝑣𝐿𝑊𝐼𝑅 )𝑒−(𝑋𝑉𝐼𝑆−𝑋𝐿𝑊𝐼𝑅)2/𝜎𝑑
2 
, where 𝑋 ,  𝑋𝐿𝑊𝐼𝑅 are coordinates of the 

points identified as vines using the VIS and LWIR data sets, respectively, and 𝜎𝑑 the root mean square value of 

the vine width derived from the VIS data. 
 

A threshold, 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡)
𝑇
, is set, such that joint probability estimates, 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡) > 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡)

𝑇
, are declared vine material. 

This is the only parameter that need be set by a user, and which is readily adjusted based on objectively viewing 
the degree of contamination by the background, i.e. roads, trees, bushes, etc. 

Assessment of segmentation performance: The results of the approach when applied only to the VIS DPC are 

shown in Figure 34, with an expanded view (Region 1) of an area where an irrigation pipe has ruptured shown in 

Figure 34, right. This region has a combination of significant green inter-row material, much more vigorous vine 

growth, shadowing caused by extended vine growth, and varying hue from strong sunlight. Despite this, the 

algorithm has correctly identified only vine material. 

There are also patches of vineyard where the algorithm has failed to correctly identify vine material, e.g. Region 

2. While the algorithm suggests a complete absence of vine material, a better interpretation is that the plant 

density has fallen below a threshold ground resolution required by the SfM. This is confirmed by examination 

of the raw imagery (Figure 35), which shows the sparsity to be largely due to poor performance of the SfM 

(noting it was intentionally provided imagery gathered under sub-optimal conditions to show performance 

under these circumstances). The image on the left of Figure 35 shows an expanded view of the raw VIS imagery 

observed onboard the UAV. This shows the vine material in this region, albeit thinner than in other areas of the 

vineyard. The image on the right of Figure 35 shows SfM output, where distortions in the resultant DPC have 

obscured the sparser vine material and resulted in a much flatter 3D structure than truly exists. As a result, these 

sparser segments of the vineyard have been identified as ground material. 

𝑉𝐼𝑆 
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The results of LWIR-only segmentation are shown in Figure 36.  As with VIS-only outcomes, due a 
combination of poor height determination by the SfM and slightly cooler surface temperatures in the more 
densely vegetated areas, performance is imperfect in areas such as Region 1. 

 
 

  
 
 

 
Figure 37: Result of vine identification algorithm using VIS and LWIR data (left) and (right) expanded view of Region 1 

Region 1 
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Figure 38: Superposition of vine segmentation and LWIR observations with a selection of regions that are expanded below for 
more detailed scrutiny of performance 

 

The vine segmentation and ground truth DPCs were then co-registered and superimposed onto one another for 

visual examination (Figure 38). There are small registration errors apparent in the super- position, particularly 

in the along row direction. Nevertheless, it is clear, even from this busy image, that the vine segmentation 

algorithm has successfully identified only vines over most of the vineyard. Closer inspection of an expanded 

region (Figure 39) confirms the technique’s capacity to discriminate between the dense vine foliage where 

irrigation has been damaged and grass is growing strongly between rows (Region 1, Figure 38). 

Similarly, the segmentation has successfully dealt with shadowing in both the VIS and LWIR data. Figure 40 (left) 

shows an expanded view of Region 2 from Figure 38: an area that appears to be only sparsely populated with 

vines based on the VIS DPC. Figure 40 (right) shows another expanded section of vineyard where the algorithm 

has had to deal with complex lighting and high foliage density. 

A more holistic validation of the segmentation algorithm was evaluated over the entire vineyard by contrasting 

the identified vine material against thermal imagery. The ground truth data was observed on 
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a day for which air temperatures reached about 43°C. As ground brightness temperatures typically reach up to 

60°C, but the vine leaves transpire (and their surface temperatures only reach about 40°C), the vines are clearly 

visible against the background. 

Unfortunately, regions in which irrigation infrastructure has broken, areas shaded from the direct effects of the 

sun and areas with sparse vine density but irrigated also have surface brightness temperatures around 40°C. A 

data set observed close to local noon (when the sun was near its zenith) was selected (a) to minimise the effects 

of shadowing and maximise the effects of contrast and (b) because this was prior to the cycle of irrigation, 

minimising any evapotranspiration effects in sparse vine regions. 

 

 

Figure 39: Expanded views of “Region 1” in Figure 10 (left) and the corresponding VIS DPC (right). In the left-hand image, the 
superimposed black dots indicate segments identified as vines, whereas yellow and red colouring below these dots indicate higher 
(likely between row material) and lower (likely vine material) ground temperatures, respectively 

 
 

 
Figure 40: Expanded views of “Region 3” (left) and “Region 4” (right) of Figure 38 

 

Hough Transform: Using the identified vine locations, some useful parameters such as those identified by 

[1] may now be computed, e.g. row width, height, spacing, cover fraction and missing segments. In order 
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to do this, however, the exact orientation of the vine rows must first be identified. This can be achieved 

manually, by visually determining row orientation, or automatically, using a Hough transform [57]. This 

transform uses a parametric representation of a line, 𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, where 𝜌 is the distance from the 

origin of the DPC to the line along a vector perpendicular to the line, and 𝜃 is the angle between the x- axis and 

this vector. The Hough transform is used extensively in image processing to identify continuous point sets that 

constitute lines in data. Consequently, as vine rows are typically arranged as a set of parallel lines, the method 

readily identifies row orientation. 

In general, however, a Hough Transform will not successfully determine orientation where vines are planted 

along iso-altitude curves. Under such circumstances, rotation angles should be computed manually, or the 

location of the vine rows computed as a function of vineyard geography using an alternative technique. One 

simple approach is to identify a small section of vine (in the along-row direction) at the left or right extreme of 

a vineyard, compute the across-row median and row separation, and perform the property identification 

calculations below for a short vine segment; and then repeat, having advanced to the next segment in the along-

row direction (note: this increases the computational cost of the procedure). 
 

Crop row width: Crop row width, 𝑊𝐶𝑖𝑗 = |𝑥𝑖 − 𝑥𝑀𝑗
|, may be computed for each point in the DPC (Figure 41, upper) 

[Note: the calculations of row width associated with the vineyards NW and SE of the main 10Ha test site show 

erroneous values in Figure 41.  This is because the row centroids, 𝑥𝑀𝑗
, are computed for the 10Ha vineyard]. 

The elements of the DPC associated with each row may then be sorted into ascending order and along-row 

separation distances computed (Figure 41, lower). The more significant breaks in the vine rows are clearly 

visible. The enlarged view of the data in the right-hand image show gaps in the vines less readily visible in the 

entire DPC. 
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Figure 41: Spatial distribution of vine row width (top) and missing row segments (bottom) over vineyard (enlarged views on are shown 
on right) 

 

The results for vine width estimated by the algorithm were compared to field measurements taken at around 

seventy points randomly selected throughout the vineyard (Figure 42). A comparison to row width vs stomatal 

conductance is shown in Figure 43. These measurements were conducted with Dr Vinay Pagay of Adelaide 

University. 
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Figure 42:Computed vs. measured row width 
 

Figure 43: Row width (observed by UAV) vs. stomatal 
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6 Project evaluation: potential for adoption and lessons learnt 
 

Based on the trials experience gained during the project, there are two possible concepts of operations, one 

more commercially viable than the other.  

 

The less commercially viable option centres on measurement, visualisation, and delivery of microclimatic 

conditions for a vineyard in near real time. The key impediments to realising this challenge commercially, 

however, are linked more to Australian federal UAV regulations and automation of the flying processes than to 

any technological deficiency of immaturity per se. For example, current air safety regulations apply to UAVs 

based on their weight; and any drone (plus its payload) weighing more than 2kg must be operated under a 

Remote Operations Certificate (ReOC) by a licenced operator. Consequently, a drone operator with a ReOC must 

be employed to operte the system as and when it is required to fly. The commercial rates for such personnel 

vary, but competent operators cost around $1,500 per day. Also, unless retained under a suitable commercial 

arrangement, the operator would likely be required at short notice based on local meteorological 

measurements and/or predictions. This would impose considerable operational (and hence cost) overheads.  

 

Furthermore, if multi-UAV techniques are not used, the ground sensor component must be deployed; and this 

takes time, approximately one day per 10Ha. Whilst not skilled work (the deployment needs are like those of 

an irrigation system), two people are generally required to test sensors. Alternatively, the ground component 

could be pre-deployed and left in situ for extended periods. This requires the equipment to be weatherproofed 

and imposes further (modest) cost.  

 

The more commercially viable option for a concept of operations centres around measurement of events over 

a growing cycle, potentially over several cycles. This can be accomplished either through an extended 

deployment, which would require weatherproofing of the ground sensors, or a pre-planned deployment of the 

system throughout one or more years. The advantage of this approach is that for frost events the technology 

could be used to assess need for frost fans, optimise the location of frost fans, determine the impact of frost 

protection strategies, generate spatial maps of frost measured over time, and determine the propensity for 

atmospheric inversions in certain regions. Similarly, for heat stress events, the system can be used to calculate 

evapotranspiration and CWSI (both as a function of space/geography and time), the spatial variation of plant 

vigour, and how much irrigation is needed within a vineyard and where. 

 

To substantially reduce costs, would be possible for the entire acoustic tomography system to be replaced with 

a single sonic anemometer (or several on a tower or distributed spatially). This would cost about $5,000 per 

anemometer and a similar amount for a 10m tower. Approximations can then be made with respect to average 

vertical wind profiles based on Monin-Obukhov Similarity Theory (MOST). Atmospheric buoyancy criteria that 

permit sensible heat flux to be calculated can also be computed. However, any extrapolations drawn from such 

point observations would be vastly inferior to those based on AAT and shown in this report.  

 

Under another project, UniSA has worked with a Sydney-based company, Midspar Systems, to miniaturise an 

acoustic tracking device that could be used in place of the ground sensor data acquisition system. The cost of 

this system is, however, around $20,000 per unit, as opposed to about $5k, not including the power supply and 

solar panels (noting each Midspar unit can sample 12 microphones as opposed to 7 for the UniSA systems). 

Moreover, the sensitivity of the Midspar system allows detection and tracking of the sound fields generated by 

the UAVs at much greater range (3km for petrol-driven UAVs).  
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Based on the analysis of the AAT, it is likely that the minimum practical ground sensor separation is about 50m, 

which is 49 sensors and 7 UniSA ground stations per 10Ha vineyard. Other drone systems could be employed, 

including fixed wing systems, to cover larger areas than this project attempted, but the cost of any such system 

would scale accordingly.  

 

Payload miniaturisation is also a possibility for the thermographic drone, but the need for a sensor with high 

thermal accuracy pushes the cost of such a system up to around $20,000. Less expensive thermographic systems 

are certainly available (circa $5,000) but they have very low thermal and spatial resolution and would not deliver 

the capability demonstrated in this report. 
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7 Concluding remarks and future work 
This project has shown UAV-based acoustic atmospheric tomography (AAT) combined with thermography can be 

used to accurately estimate and visualise temperature and wind velocity across a vineyard block. During heat 

events this permits computation of plant stress factors like evapotranspiration (ET) and crop water stress index 

(CWSI). Similarly, during frost events the technology can provide high resolution thermal maps of the surface 

and air temperatures surrounding the vineyards as a function of geographic and temporal variation. 

In both cases this permits evaluation of the effectiveness and/or need for mitigation strategies, such as frost 

fans, sprinklers, and irrigation, to be applied with greater discretion. However, as the technology is still in its 

infancy, the full value of the microclimatic information it offers is still being assessed. Regardless, initial 

conclusions suggest frost mitigation strategies based on air temperature measurements alone may be sub-

optimal; and the microclimatic conditions observed during heat stress events suggest opportunities for 

optimising irrigation, which is normally applied uniformly across a block. This would deliver water and energy 

savings. 

In addition to the above, a technique for identifying and classifying vine properties such as row width, height, 

cover-fraction, and missing segments was developed. The genesis of this algorithm was as a bi- product of the 

need for the tomographic-thermographic data fusion routines to uniquely identify the thermographic (LWIR 

radiation) properties of the vineyard, i.e. the need to automatically separate vines from inter-row material as 

they have different emissivity. The algorithm offers users the ability to rapidly, efficiently and non-destructively 

visualise plant vigour as a spatial function of vineyard geography: the information may be integrated into 

decision support tools to improve management practices. 

In the final analysis, the value proposition for a decision support tool based on remote sensing derives not from 

the capabilities of any given technology or sensor per se, but from a system’s holistic potential to improve 

efficiencies and reduce fieldwork. In other words, when developing aids to support mapping and early 

identification of vineyard characteristics like disease, biophysical stress and equipment failures—for practical 

reasons—successful technologies should not critically rely on specialist users who are expert in the design or 

operation of the relevant software, mathematical techniques or manipulation of information sets. Nor should 

algorithms make use of machine learning approaches that require training on unique or hard-to-obtain data 

sets. They should intrinsically cope with sub-optimal equipment configurations and reasonable performance 

degradation in the processing chain. Ideally, users should need to supply only a few intuitive parameters. This 

technology has not yet reached a level of maturity that would allow non- specialist users to deploy and operate 

it in the field. However, in the right hands, it offers significant research potential for examination of vineyard 

blocks subject to weather stress events. 

Potential follow-on work could entail use of the technology developed under this project to accurately 

determine ET across a vineyard block over a growing season. Such a goal would be achieved in two steps: 

1) Estimation of seasonal crop coefficients: The spatial and temporal patterns of vine canopy development 

at key phenological stages from flowering to harvest would be determined using high resolution RGB/LWIR 

cameras flown onboard a UAV. Canopy width and height extracted from aerial this imagery would then be used 

to estimate the crop coefficient (note: crop coefficient is related to the area of exposed leaves). These remotely-

sensed crop coefficients would be validated and refined using the 
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ground-based Paso Panel technique based on canopy light interception developed by the University of Adelaide. 

2) Obtaining ET: AAT would be used to estimate reference ET (ET0) via temperature and wind speed 

measurements, with relative humidity and solar radiation provided by an on-site weather station. Using these 

environmental parameters, high spatial resolution ET0 would then be calculated via the Penman- Monteith 

equation for the vineyard. ET0 and crop coefficients determined in the first step will be used to calculate ET 

across the vineyard block and over the course of the growing season. 

In addition, the thermal imagery obtained from the UAV-mounted infrared camera would be used to 

characterise patterns of water stress across the block and compared with the spatial and temporal patterns of 

the difference between irrigation applications and ET to estimate soil water deficits and hence vine water stress. 
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8 Project media and publications 
 

Preliminary Evaluation of Atmospheric Temperature And Wind Profiles Obtained Using Unmanned Aerial 

Vehicle Based Acoustic Tomography A. Finn, K. Rogers, J. Meade, J. Skinner, and A. Zargarian. Int. Arch. 

Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 283–287, https://doi.org/10.5194/isprs-archives-XLII-

2-W13-283-2019, 2019 

 

Extraction of Vineyard Macrostructure From Sub-Optimal Sequences Of Aerial Imagery 

A. Finn, A. Melville-Smith, and R. Brinkworth.  ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 

103–110, https://doi.org/10.5194/isprs-annals-IV-2-W5-103-2019, 2019 

 

The sound of science  Anthony Finn.  SPAA, Society of Precision Agriculture Australia, Precision Ag News, Volume 

16, Issue 1, 2019 

  

Accurate group velocity estimation for unmanned aerial vehicle-based acoustic atmospheric tomography  

Kevin J. Rogers and Anthony Finn.  The Journal of the Acoustical Society of America 141, 1269 (2017); 

https://doi.org/10.1121/1.4976818 

 

Spatio-temporal observations of temperature and wind velocity using drone-based acoustic atmospheric 

tomography  Anthony Finn, Kevin Rogers, Joshua Meade, Jarrod Skinner and Amir Zhargarian. The Journal of 

the Acoustical Society of America 145, 1903 (2019); https://doi.org/10.1121/1.5101906 

 

Drones offer the chance of real-time micro-climate information  Nick Carne, Wine Australia Newsletter, 07 

April 2017 

 

Drones showing their value in vineyards  Nick Carne, Wine Australia Newsletter, 08 June 2018 

 

 

9 Intellectual property 
 

A vine row identification technique was created to better estimate the emissivity used for the calculation of 

evapotranspiration. 
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Appendix: Additional heat stress trial data (February 2018) 
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